Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 261

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of a cooperative operation robot system for radiation source exploration (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2023-030, 80 Pages, 2024/03

JAEA-Review-2023-030.pdf:4.96MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a cooperative operation robot system for radiation source exploration" conducted in FY2022. The present study aims to develop a Cooperative Operation Robot system for RAdiation Source Exploration (CORRASE). The multiple robot system provides radiation source exploration with wide field of view, rapidity, and low cost. The radiation source exploration is realized with multiple robots carrying directional gamma-ray detectors determining the incident direction of the incoming gamma-rays. We will develop the system by the final year of this proposal aiming for application in the Fukushima Daiichi Nuclear Power Station.

JAEA Reports

Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2023-020, 90 Pages, 2023/12

JAEA-Review-2023-020.pdf:6.59MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted from FY2020 to FY2022. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system with high neutron detection efficiency (a few count/nv) under high gamma ray background (1kGy/h). Developed components are neutron detection devices based on diamond sensors and a high radiation resistive signal-processing data-transfer system based on radiation resistive integrated circuit technologies.

Journal Articles

Rapid multi-nuclide identification method by simultaneous $$beta$$, $$gamma$$, and X-ray spectrum analysis

Oshima, Masumi*; Goto, Jun*; Hayakawa, Takehito*; Asai, Masato; Kin, Tadahiro*; Shinohara, Hirofumi*

Isotope News, (790), p.19 - 23, 2023/12

When analyzing samples that contain many radionuclides at various concentrations, such as radioactive waste or fuel debris, it is difficult to apply general spectrum analysis methods and is necessary to chemically separate each nuclide before quantifying it. The chemical separation is especially essential for analysis using a liquid scintillation counter (LSC). In this report, the authors explain the newly developed spectral determination method (SDM) in which the entire spectrum is fitted to quantify radioactivity of nuclides mixed in a sample. By applying the SDM to $$beta$$- and X-ray spectrum measured by LSC and $$gamma$$-ray spectrum measured by Ge detector simultaneously, the authors demonstrated that radioactivity of 40 radionuclides mixed in a sample at concentrations varying by two orders could be quantified, which is useful to simplify chemical separation process in radionuclide quantification.

JAEA Reports

Development of radiation hardened diamond image sensing devices (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Advanced Industrial Science and Technology*

JAEA-Review 2023-003, 72 Pages, 2023/06

JAEA-Review-2023-003.pdf:4.87MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of radiation hardened diamond image sensing devices" conducted from FY2019 to FY2021. The present study aims to develop image sensing devices which work under the high radiation condition. The devices will be realized using radiation hard diamond semiconductor devices as charge transfer devices and photodetectors. The research project has mainly two targets such as to confirm charge coupled devices operation on diamond unipolar devices and to characterize photo conductivity of diamond detectors.

JAEA Reports

Development of thin SiC neutron detector with high radiation resistance (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2022-068, 90 Pages, 2023/05

JAEA-Review-2022-068.pdf:3.55MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of thin SiC neutron detector with high radiation resistance" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional neutron detectors is difficult because heavy radiation shields are needed.

Journal Articles

Attention-based time series analysis for data-driven anomaly detection in nuclear power plants

Dong, F.*; Chen, S.*; Demachi, Kazuyuki*; Yoshikawa, Masanori; Seki, Akiyuki; Takaya, Shigeru

Nuclear Engineering and Design, 404, p.112161_1 - 112161_15, 2023/04

 Times Cited Count:4 Percentile:94.27(Nuclear Science & Technology)

Journal Articles

Actual stress analysis of small-bore butt-welded pipe by complementary use of synchrotron X-rays and neutrons

Suzuki, Kenji*; Miura, Yasufumi*; Shiro, Ayumi*; Toyokawa, Hidenori*; Saji, Choji*; Shobu, Takahisa; Morooka, Satoshi

Zairyo, 72(4), p.316 - 323, 2023/04

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2022-070, 70 Pages, 2023/03

JAEA-Review-2022-070.pdf:5.27MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2021. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, and neutron detectors to be developed ...

JAEA Reports

Development of a cooperative operation robot system for radiation source exploration (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-041, 76 Pages, 2023/01

JAEA-Review-2022-041.pdf:3.27MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a cooperative operation robot system for radiation source exploration" conducted in FY2021. The present study aims to develop a Cooperative Operation Robot system for RAdiation Source Exploration (CORRASE). The multiple robot system provides radiation source exploration with wide field of view, rapidity, and low cost. The radiation source exploration is realized with multiple robots carrying directional gamma-ray detectors determining the incident direction of the incoming gamma-rays. We will develop the system by the final year of this proposal aiming for application in the Fukushima Daiichi Nuclear Power Station.

JAEA Reports

Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2022-031, 89 Pages, 2022/12

JAEA-Review-2022-031.pdf:8.45MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2021. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under 1 kGy/h and compact-light-weight to fit constraints of the penetration size and the payload. The project aims to design and evaluate neutron detection devices based on diamond sensors and a high radiation resistive signal-processing data-transfer system based on radiation resistive integrated circuit technologies …

Journal Articles

Crystal configuration dependence of CsI(Tl) scintillation detectors on environmental dose rate measurement

Tsuda, Shuichi; Saito, Kimiaki

Radiation Protection Dosimetry, 198(17), p.1283 - 1291, 2022/10

 Times Cited Count:0 Percentile:0.01(Environmental Sciences)

Spherical or cylindrical detectors superior to directional characteristic are commonly used to monitor dose rates in the environment to detect scattering gamma-rays emitted from radionuclides in soil or air. The authors have performed environmental dose rates measurements using various kinds of detectors to investigate the directional characteristics, and experimentally verified the variations in dose rates due to directional characteristics unique to each detector. Furthermore, a dose rate measured by a CsI(Tl) scintillation detector with cuboidal crystal agreed with that by a CsI(Tl) scintillation detector with cylindrical crystal. Simulations by PHITS under various CsI(Tl) crystal configurations revealed that there are certain aspect ratios of cuboidal CsI(Tl) crystal with less directional dependence. Since cubes are advantageous in terms of production cost, this result indicates the potential of CsI(Tl) scintillation detectors with cuboidal crystal for use in the environmental dose rate monitoring.

JAEA Reports

The Laboratory Operation Based on ISO/IEC 17025; Radioactivity analysis of environmental samples by germanium semiconductor detectors

Urushidate, Tadayuki*; Yoda, Tomoyuki; Otani, Shuichi*; Yamaguchi, Toshio*; Kunii, Nobuaki*; Kuriki, Kazuki*; Fujiwara, Kenso; Niizato, Tadafumi; Kitamura, Akihiro; Iijima, Kazuki

JAEA-Review 2022-023, 8 Pages, 2022/09

JAEA-Review-2022-023.pdf:1.19MB

After the accident of the Fukushima Daiichi Nuclear Power Station, the Japan Atomic Energy Agency has newly set up a laboratory in Fukushima and started measuring radioactivity concentrations of environmental samples. In October 2015, Fukushima Radiation Measurement Group has been accredited the ISO/IEC 17025 standard by the Japan Accreditation Board (JAB) as a testing laboratory for radioactivity analysis ($$^{134}$$Cs, $$^{137}$$Cs) based on Gamma-ray spectrometry with germanium semiconductor detectors. The laboratory has measured approximately 60,000 of various environmental samples at the end of March 2022. The laboratory quality control and measurement techniques have been accredited by regular surveillance of JAB. In September 2019, the laboratory renewed accreditation as a testing laboratory for radioactivity analysis.

JAEA Reports

Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-015, 119 Pages, 2022/09

JAEA-Review-2022-015.pdf:6.62MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. Although laser processing has various advantages, one well-known disadvantage is that it generates a large amount of microparticles during the processing. Therefore, the application of laser processing to decommissioning waste contaminated with radioactive materials has been hesitant because the mechanism generating the microparticles has not been fully understood.

Journal Articles

Calculating off-axis efficiency of coaxial HPGe detectors by Monte Carlo simulation

Omer, M.; Shizuma, Toshiyuki*; Hajima, Ryoichi*; Koizumi, Mitsuo

Radiation Physics and Chemistry, 198, p.110241_1 - 110241_7, 2022/09

 Times Cited Count:2 Percentile:50.96(Chemistry, Physical)

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2021-049, 67 Pages, 2022/01

JAEA-Review-2021-049.pdf:7.54MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2020. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, …

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2021-042, 115 Pages, 2022/01

JAEA-Review-2021-042.pdf:5.18MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor and integrated circuit whose radiation resistance was improved by circuit design.

JAEA Reports

Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2021-038, 65 Pages, 2022/01

JAEA-Review-2021-038.pdf:4.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2020. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under high gamma ray radiation environment (i.e. 1 kGy/h maximum) and compact-light-weight to fit constraints of the penetration size and the payload.

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2021-033, 55 Pages, 2021/12

JAEA-Review-2021-033.pdf:2.9MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted in FY2020. We are developing a one-dimensional optical fiber radiation sensor that can estimate the radioactive source distribution "along lines" instead of "at points". To improve the conventional time-of-flight optical fiber radiation sensor for the application under high dose rate environment, basic evaluation tests were conducted using various optical fibers with different diameters and materials.

JAEA Reports

Development of radiation hardened diamond image sensing devices (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Advanced Industrial Science and Technology*

JAEA-Review 2021-026, 47 Pages, 2021/11

JAEA-Review-2021-026.pdf:2.16MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of radiation hardened diamond image sensing devices" conducted in FY2020. The research objective of this project is to develop image sensing devices which work under the high radiation condition. The devices will be realized using radiation hardened diamond semiconductor devices as charge transfer devices and photodetectors. The research project has mainly two targets such as to confirm charge coupled devices operation on diamond unipolar devices and to characterize photo conductivity of diamond detectors.

Journal Articles

Development of the multi-cubic $$gamma$$-ray spectrometer and its performance under intense $$^{137}$$Cs and $$^{60}$$Co radiation fields

Kaburagi, Masaaki; Shimazoe, Kenji*; Kato, Masahiro*; Kurosawa, Tadahiro*; Kamada, Kei*; Kim, K. J.*; Yoshino, Masao*; Shoji, Yasuhiro*; Yoshikawa, Akira*; Takahashi, Hiroyuki*

Nuclear Instruments and Methods in Physics Research A, 1010, p.165544_1 - 165544_9, 2021/09

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The number of nuclear facilities being decommissioned has been increasing worldwide, in particular following the accident of the Tokyo Electric Power Company Holdings' Fukushima Daiichi Nuclear Power Station in 2011. In these nuclear facilities, proper management of radioactive materials is required. Then, A $$gamma$$-ray spectrometer with four segmentations using small volume CeBr$$_{3}$$ scintillators with a dimension of $$5 times 5 times 5$$ $$rm{mm}^3$$ was developed. The four scintillators were coupled to a multi-anode photomultiplier tube specific to intense radiation fields. We performed the $$gamma$$-ray exposure study under $$^{137}$$Cs and $$^{60}$$Co radiation fields. Under the $$^{137}$$Cs radiation field, the relative energy resolution at 1375 mSv/h was the relative energy resolution at 1375 mSv/h was 9.2$$pm$$0.05%, 8.0$$pm$$0.08%, 8.0$$pm$$0.03%, and 9.0$$pm$$0.04% for the four channels, respectively.

261 (Records 1-20 displayed on this page)